
Int. J. Computer Applications in Technology, Vol. 64, No. 3, 2021  

Copyright © 2021 Inderscience Enterprises Ltd. 
 

Design, Optimization and Implementation of a DCT/IDCT Based Image 
Processing System on FPGA 

Shensheng Tang*, Monali Sinare, Yi Zheng 

St. Cloud State University, St. Cloud, MN 56301, USA 

stang@stcloudstate.edu; mksinare@go.stcloudstate.edu; zheng@stcloudstate.edu 

*Corresponding author  

Abstract: In this paper, a discrete cosine transform (DCT) and its inverse transform IDCT are 
designed and optimized for FPGA using the Xilinx VIVADO High-Level Synthesis (HLS) tool. 
The DCT and IDCT algorithms along with a filter logic written by C/C++ are simulated for 
functional verification and optimized through HLS and packaged as custom IPs. The IPs are 
incorporated into a VIVADO project to form an image processing system for hardware validation. 
The VIVADO design along with a Xilinx SDK application written by C language is implemented 
on a Zynq FPGA development board, ZedBoard. A C# GUI is developed to transfer image data 
to/from the FPGA and display the original and processed images. Experimental results are 
presented with discussion. The FPGA development method including the DCT/IDCT IP design, 
optimization and implementation via HLS as well as the VIVADO project integration can be 
extended to a wider range of FPGA applications.  

Keywords: DCT; IDCT; FPGA; VIVADO HLS; IP; ZedBoard; GUI; C/C++; Verilog; C#; 
Optimization; C/RTL Co-simulation; Hardware Validation.   

Reference to this paper should be made as follows: Tang, S., Sinare, M., and Zheng, Y. (20xx) 
‘Design, Optimization and Implementation of a DCT/IDCT Based Image Processing System on 
FPGA’, Int. J. Computer Applications in Technology, Vol. xx, No. xx, pp.xxx–xxx. 

Biographical notes: Shensheng Tang is an Associate Professor in the Department of Electrical 
and Computer Engineering in St. Cloud State University, USA. He received his Ph.D. from 
University of Toledo, USA. He has eight years of product design and development experience, as 
hardware engineer, system engineer, and manager respectively, in the electronics and wireless 
industry. His current research interests include embedded systems, networking (wireless, wired), 
Internet of things (IoT), and modelling and performance evaluation. He has served or is serving as 
editor or guest editor for international journals and technical program committee (TPC) member 
of international conferences. He has produced about 100 peer-reviewed publications in the above 
areas. He is a senior member of IEEE. 

Monali Sinare is a student at the Department of Electrical and Computer Engineering, St. Cloud 
State University, Minnesota, pursuing a Master of Science in Electrical Engineering. She has 
received a Master of Science degree in Electronics Science from Savitribai Phule Pune University, 
Pune, Maharashtra, India, in 2007. She has nine years of experience in FPGA based control system 
design and development. She has worked on the design and development of Verilog and VHDL 
modules, testing, and integration of various submodules for FPGA based systems designed for 
control and monitoring of medical instruments. Her research interests include digital signal 
processing, image processing, high-level synthesis, hardware-software co-design, and embedded 
systems. 

Dr. Yi Zheng, graduated from Iowa State University, joined faculty of Electrical and Computer 
Engineering of St. Cloud State University in 1987, served as department chair from 1997 to 2004, 
full professor since 1993. His research interest is wave propagation including optical wave in 
motion, ultrasound and EM waves in tissue, and embedded systems. He worked at Very Large 
Array and Ames Laboratory in 80s. From 1991 to 1992, He was with IBM to apply artificial neural 
networks for large data processing. From 1993 to 2009, he was with Ultrasound Research Lab of 
Mayo Clinic to develop neural networks for medical image analysis, and ultrasound vibrometry for 
measuring tissue elasticity and viscosity. He was with IMI vision for embedded system design and 
sensor design. From 2006 to 2009, he was with Force 10 Network for high-speed circuit research. 
He worked with Lift-Touch Studio, Motorola, LionPrecision, Medtronic, Born-Fuke, and Emerson, 
etc.  

 



Int. J. Computer Applications in Technology, Vol. 64, No. 3, 2021  

Copyright © 2021 Inderscience Enterprises Ltd. 
 

1 Introduction 

Discrete cosine transform (DCT) [1] is used to represent 
spatial domain data into their frequency domain 
representation so that the image information exists in a 
quantitative form that can be processed. In image processing, 
DCT can retrieve image features with the help of frequency 
domain data. The inverse discrete cosine transform (IDCT) 
can be used to transfer the frequency domain data back to 
spatial domain data. The computations like DCT require high 
computational power and resources. Parallel processing, in 
case of a design involving complex computations such as 
DCT, can improve the performance of the design with respect 
to speed of the computation. Field-programmable gate arrays 
(FPGAs) [2] are programmable logic devices that inherently 
contain parallel processing and pipelining features and allow 
flexible reconfigurable computing. FPGA has applications in 
many areas such as telecommunication systems [3], encoder 
and decoder systems [4] and electronic circuit 
implementation [5]. Moreover, high-level synthesis (HLS) 
tools [6] provided by FPGA vendors such as Xilinx VIVADO 
HLS [7] allow users to program in high level language such 
as C or C++ and convert the design into RTL implementation 
for FPGA programming.  

DCT is a widely used transformation technique in many 
application fields such as signal processing [8]-[11], data 
compression [12]-[14], spectrum analysis [15][16], and 
multimedia telecommunications [17][18]. In [8], an approach 
to the implementation of a DCT for application toward single 
speech channel encoding was proposed with a detailed 
computer simulation. In [9], a unified DCT/IDCT algorithm 
based on the subband decompositions of a signal was 
proposed and implemented by an FPGA. In [10], a low 
complexity 2D-DCT architecture was proposed to transform 
spatial pixels to spectral pixels while taking into account the 
constraints of the considered compression standard. In [11], 
a fast discrete cosine transform algorithm was proposed that 
utilizes the energy compactness and matrix sparseness 
properties in frequency domain to achieve higher 
computation performance. In [12], an orthogonal 
approximation algorithm for the 8-point DCT was introduced 
for image compression with comparable computational 
complexity. In [13], a JPEG encoder was designed and 
implemented using Verilog HDL that involves a complex 
sub-block DCT. In [14], a computational method based on 
the Loeffler 1D-DCT algorithm was proposed for 2D 8×8 
DCT based on an algebraic integer architecture that maintains 
error-free computations.  

In [15], a DCT spectral analysis technique was employed 
for producing power spectra from two-dimensional 
atmospheric fields and extracting information at specific 
spatial scales. In [16], a new pseudo-spectral method was 
derived for image interpolation using the DCT symmetric 
extension in the forward transform. In [17], a DCT based 

compression and decompression technique was proposed to 
reduce the volume of multimedia data over wireless channels 
for multimedia communications. In [18], a DCT based 
compressed wideband spectrum sensing method was 
proposed to alleviate the sampling requirements in cognitive 
radio networks by utilizing the compressive sampling 
principle and exploiting the unique sparsity structure.    

Other notable areas of DCT applications are biometrics 
[19], geospatial remote sensing [20], and security [21]. As a 
result, the two-dimensional version of the 8-point DCT was 
adopted in several imaging standards such as JPEG [22], 
MPEG-2 [23], H.263 [24] and H.264/AVC [25]. Although 
fast algorithms can largely reduce the computational 
complexity of DCT [26][27], floating-point operations are 
still needed for the accuracy. There is a trade-off between 
complexity and accuracy. In practice, approximate 
transforms are used to reduce the floating-point operations in 
a fast algorithm.   

In this paper, DCT and IDCT computation algorithms for 
an 8-bit grayscale image are designed and optimized using 
Xilinx VIVADO HLS tool [7] as well as implemented for the 
Xilinx Zynq-7020 SoC (System on Chip) FPGA device [28]. 
The DCT and IDCT algorithms along with a filter logic 
written by C/C++ code are simulated for functional 
verification in the HLS and packaged as custom IPs 
(Intellectual Property) for hardware validation in a VIVADO 
project (via VIVADO Design Suite [29]) as well as tested on 
a Zynq FPGA development board, ZedBoard [30]. A C# GUI 
(Graphical User Interface) is designed through Visual Studio 
IDE [31] for transferring image data to/from the FPGA over 
a UART (Universal Asynchronous Receiver Transmitter) 
serial port and displaying the original and processed images. 
The major contribution of the paper is detailed as follows: 

 Design and simulate the DCT and IDCT algorithms 
with C++ for processing an 8-bit grayscale image 
data using the HLS. 

 Design and simulate a basic filter logic with C++ for 
attenuating high or low frequencies in the image data 
using HLS.    

 Optimize the DCT, IDCT and Filter logic design by 
applying various HLS directives, and perform 
synthesis and C/RTL Co-simulation for functional 
verification as well as package them as IPs.  

 Design and develop a VIVADO project through 
VIVADO Design Suite to test the developed DCT, 
IDCT and Filter IP cores. 

 Develop a Xilinx SDK (Software Development Kit) 
[32] application program by C language, which 
works with the hardware design created with 
VIVADO Design Suite. 

 Design and develop a C# GUI to test the VIVADO 
project on the Zynq 7020 SoC device and visualize 
the original and processed images.  



The remainder of the paper is organized as follows: 
Section 2 describes the design, optimization and 
implementation of the DCT, Filter, and IDCT IPs; Section 3 
details the design and implementation of a VIVADO project 
on FPGA that incorporates the three HLS IPs; Section 4 
describes the design and implementation of a C# GUI that 
communicates with the FPGA design via serial port; Section 
5 presents the hardware/software system operation and 
experimental results; Finally, Section 6 concludes the paper. 

 
2 Design, Optimization and Implementation of 

DCT, Filter and IDCT Modules 

2.1 Background Knowledge 

DCT and IDCT: The DCT represents a real valued spatial 
domain signal in the form of summation of sinusoidal 
functions of different frequencies. The DCT is widely used 
in image processing. Compared with discrete Fourier 
transform (DFT), DCT only uses cosine coefficients. There 
are four types of DCT, DCT-I, DCT-II, DCT-III and DCT-
IV. As the image is represented as two-dimensional (2d) data, 
the DCT-II that is 2d DCT is mostly used.  

The following equation shows the DCT-I computation. 
The N-point DCT-I (1d DCT) [33] of a discrete signal, x(n) 
is given as 

      𝑋௞ ൌ 𝑐ሺ𝑘ሻ∑ 𝑥ேିଵ
௡ୀ଴ ሺ𝑛ሻcos ሾగ

ே
ሺ𝑛 ൅ ଵ

ଶ
ሻ𝑘ሿ                 (1) 

      for  k = 0, 1, ..., N-1,                             

where 𝑐ሺ𝑘ሻ, called scale factor, is given as  

          𝑐ሺ𝑘ሻ ൌ ൞

ଵ

√ே
,                   𝑘 ൌ 0,

ටଶ

ே
 ,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

  

The IDCT can be used to transform the frequency domain 
data back to spatial domain. The 1d IDCT is given as 

      𝑥ሺ𝑛ሻ ൌ ∑ 𝑐ேିଵ
௡ୀ଴ ሺ𝑘ሻ𝑋௞cos ሾగ

ே
ሺ𝑛 ൅ ଵ

ଶ
ሻ𝑘ሿ                  (2) 

      for  k = 0, 1, ..., N-1.                            

The 2d DCT is separable. It can be calculated using 1d 
DCT by taking the 1d DCT of the rows and then taking 1d 
DCT of the columns of the data generated by the first 1d 
DCT. In this work, an image is divided into 8×8 matrices of 
pixel data. An 8-point DCT computation logic is 
implemented in the HLS. The 1d DCT of rows is calculated 
using Equation (1). The columns of the resulting matrix are 
used to calculate the 1d DCT again to get the 2d DCT of 8×8 
image data matrix. Similarly, IDCT computation logic is 
implemented in the HLS using Equation (2). It is observed 
from Equations (1) and (2) that for constant DCT size, the 
cosine coefficients can be separately calculated. In this work, 
the cosine coefficients for DCT and IDCT are separately 

calculated and stored in text files and will be loaded to 
program by the HLS.    
Frequency Domain Image Representation: In the spatial 
domain, a pixel is represented by its location and value. In the 
frequency domain, the pixel location corresponds to the 
frequency of a pixel occurring within the image and the pixel 
value corresponds to the amplitude. If the image data in the 
spatial domain are converted to the frequency domain using 
DCT, the lower frequencies are in upper left corner of the 
data matrix and the high frequencies are in the lower right 
corner. Depending upon the amplitude of pixel in the 
frequency domain, it can be derived which frequency 
contains more information in the image.  

To calculate the DCT, an image pixel matrix is divided 
into N×N blocks. In case of 8-bit grayscale image, N can be 
taken as 8, as the grayscale values vary from 0 to 255 and can 
be expressed using 8 bits. Hence, DCT calculation of 8×8 
pixel data using Equation (1) gives 8×8 frequency domain 
data.  
Filter Logic Description:  For image data in frequency 
domain, larger values of high frequency components indicate 
that the pixel data are changing faster over a short distance 
scale, e.g., edges or stripes in an image. On the other hand, 
larger values of low frequency components indicate that the 
image contains more smooth regions. The frequency domain 
analysis of image data provides important information about 
image which can be utilized to implement different 
applications such as smoothing, sharpening, removing noise, 
and edge detection. In this work, since the focus is on the 
design and implementation of DCT and IDCT logic on 
FPGA, we treat the frequency domain processing as simple 
as possible and introduce a basic filter logic in the FPGA 
implementation, which simply attenuates either low 
frequency components or high frequency components for the 
validation of image processing effect. However, due to the 
modular design method, more complicated filtering 
algorithms or data processing methods can easily be applied 
to replace the basic filter logic.     
Bitmap File Format: The bitmap file can store the image 
data in different formats, e.g., grayscale or color. The bitmap 
does not include any compression, which makes it feasible to 
be used for testing in image processing applications. The 
bitmap file structure typically consists of fixed-sized headers 
and variable-sized pixel data appearing in a predetermined 
sequence. 

In most image processing applications, only pixel data of 
the image need to be modified. Hence, the headers are 
separated from the actual image data array. The pixel data are 
then modified as per the application requirement. For 
displaying the processed image, the modified pixel data are 
attached to the previously stored header and then the 
modified image is displayed. 



  

In this work, 8-bit grayscale bitmap files are used for 
processing. The pixel data are separated using C# bitmap 
handling functions. The image data are sent to the FPGA for 
processing. The processed image data are sent back to the 
GUI to replace the original image data. 
 
2.2 DCT Module Design and Simulation in HLS 

Figure 1 shows the 2d DCT computation algorithm 
implemented in HLS. The DCT algorithm written by C++ is 
designed to read an 8×8 image data, calculate the DCT and 
write the 8×8 DCT output. The 2d DCT computation is 
separated into two 1d DCT computations. First, the 1d DCT 
of rows is calculated and then the 1d DCT of columns are 
calculated. Figure 1 also shows a code snippet of 1d DCT 
calculation. The input is stored in a 2d local array (local[][]) 
and used to compute 1d DCT of rows. As per Equation (1), 
the multiplied and accumulated result for every k needs to be 
multiplied by a coefficient c(k). Here c(k) is stored as a 
constant and used for final multiplication. Then we perform 
transpose operation on the result (a 2d array) and store it in 
another local array (local_1[][]). Finally we calculate the 1d 
DCT of columns and transpose the result back to complete 
the 2d DCT computation.     

The coefficients are stored in floating point format and the 
computation is also performed using floating point format for 
accuracy. The input image data are read as unsigned integer. 
However, the input data will be first stored in the DDR of the 
ZedBoard, which is 32-bit aligned. The image data are to be 
passed to the DCT IP from the Processing System (PS) of the 
Zynq 7020 SoC device through DMA (Direct Memory 
Access). To keep the data transfer from the DDR to DCT IP 
less complicated, the 8-bit data are read as 32-bit unsigned 
integer. Since the DCT computation is in floating point, the 
resulting output will also be in floating point format. This 
way when the DCT output is passed to IDCT IP to convert 
the frequency domain data back to spatial domain, the 
resulting image data will not be distorted due to DCT/IDCT 
factor.  

The C Simulation in HLS is run to verify the functionality 
of the logic developed for DCT calculation. A testbench 
written by C++ is used to provide image data input and print 
the corresponding DCT output. The input image data are 
taken from an image data extracted by MATLAB [34]. The 
output generated by the DCT algorithm is printed and 
compared with the output generated by the MATLAB 
simulation. Figure 2 shows the comparison based on the first 
8×8 matrix of the image data. Since the calculation is based 
on floating point, the result is considerably accurate except 
for slight changes after the decimal point. 
 
2.3 DCT Module Optimization and Package in HLS 

Next we run synthesis on the DCT module in the HLS. The 
latency of the DCT logic is 157.18 μs, which is because of 
the running of nested loops. Various HLS directives [7] are 
then applied to the DCT design for optimization. The design 
includes six sections. The first is for reading input; second for 
1d DCT of rows; third for transposing the columns; fourth for 
1d DCT of the transposed columns; fifth for transposing the 
columns back and sixth for writing the output. Each section 
includes two for-loops. To unroll and parallelize the loops, 
the HLS PIPELINE directive is used for the inner for-loops. 
Figure 3 shows the HLS PIPELINE directive applied to the 
for-loops.  

To further utilize the FPGA’s parallel processing feature, 
we perform the ARRAY_PARTITION directive to the input 
2d arrays (local[][] and local_1[][]), as shown in Figure 4. 
Figure 4 also shows that the input and output data interfaces 
are set as AXI-stream (which is indicated by axis in the HLS) 
[35].  

After applying these directives, we run synthesis again 
and the latency of the DCT logic has been reduced from 
157.18 μs to 5.10 μs. Figure 5 shows the performance 
comparison of the design before applying any directives 
(solution1) and after applying the directives (solution 2). 
Figure 6 shows the loop latency in the design. All the loops 
are pipelined. 

After the synthesis, the C/RTL Co-simulation is run to 
verify the functionality in RTL (register-transfer level) 
simulation. The Co-simulation report generated in HLS 
shows the duration taken for the DCT computation from 
reading input to writing output as 5.10 μs, which can also be 
found in the RTL simulation waveform generated in a pop-
out VIVADO [29] window (Figure 7). This shows that the 
DCT design is successful and can now be packaged as a 
custom IP in HLS. The DCT IP can be added to a VIVADO 
repository and used by a VIVADO project for system 
integration.  
 
2.4 Filter Logic Development in HLS 

As mentioned earlier, we keep the basic filter logic design as 
simple as possible in the design. The 8×8 DCT output array 
is taken as the input of a filter logic. A selector input is taken 
from outside to decide whether to attenuate lower frequencies 
or higher frequencies. The selector input is 0 for higher 
frequencies attenuation and 1 for lower frequencies 
attenuation. The filtered output is written to an output stream. 
We run the synthesis to verify the functionality of the filter 
logic. A testbench is created to provide the test data and store 
the output in a .dat file, which is compared with the output 
generated by MATLAB simulation. If their difference is 
below the predefined threshold, the testbench will display 
“Test passed”; otherwise it will generate an error message. 
Figure 8 shows the C simulation result.  



Similar to the DCT logic, we perform synthesis and 
optimization to the filter logic and compare the performance 
of the design without optimization (solution1) and with 
optimization (solution 2) in Figure 9. It is observed that the 
directives improve the performance from 4.35 μs to 1.67 μs. 
Because our filter logic is too simple, the performance 
improvement is not much. 

We then run the C/RTL Co-simulation to verify the 
functionality in RTL simulation. The Co-simulation report 
shows the duration taken for the filter logic from reading 
input to writing output as 1.67 μs, which can also be found in 
the RTL simulation waveform generated in a pop-out 
VIVADO window in Figure 10. This shows that the filter 
logic design is successful and can be packaged as a custom 
IP for future use.  

2.5 IDCT Module Development in HLS 

The IDCT module development process is similar to the DCT 
module. The IDCT algorithm is designed according to 
Equation (2) with a similar algorithm to Figure 1. The 
algorithm is designed to read an 8x8 frequency domain image 
data, perform the IDCT computation and write the 8×8 IDCT 
output. The 2d IDCT computation is also separated in two 1d 
IDCT computations. 

An HLS C Simulation is run to verify the functionality of 
the IDCT logic. A testbench is written to give the frequency 
domain image data input and write the output in a .dat file. 
The output generated by the HLS IDCT logic is compared 
with the IDCT output from a MATLAB simulation. Figure 
11 shows the IDCT logic C simulation result.  

We run synthesis and obtain the latency of 121.98 μs. We 
then perform optimization by applying various HLS 
directives and run synthesis again. To maximize the parallel 
processing, the HLS PIPELINE and HLS 
ARRAY_PARTITION directives are applied to the IDCT 
logic. The input and output data interfaces are set as AXI-
stream. Figure 12 shows the performance comparison of the 
IDCT design without optimization (solution1) and with 
optimization (solution 2). It is observed that the optimization 
improves the performance from 121.98 μs to 4.88 μs. Figure 
13 shows the loop latency in the design with all the loops 
pipelined.    

We then perform the C/RTL Co-simulation in HLS to 
verify the functionality in RTL (register-transfer level) 
simulation. The Co-simulation report verified that the latency 
for the IDCT computation is 4.88 μs, which can also be found 
in the RTL simulation waveform generated in a pop-out 
VIVADO window in Figure 14. Finally we package the 
IDCT design as a custom IP in HLS. 

 
3   Design and Implementation of a VIVADO Project 

3.1 Design Description 

In order to validate the DCT, Filter and IDCT IPs on FPGA, 
a VIVADO project is developed to incorporate these HLS IPs 
and run on the ZedBoard, an FPGA development board 
designed for Xilinx Zynq 7020 SoC devices. Figure 15 shows 
the block diagram of the VIVADO project including DCT, 
Filter and IDCT IP cores. The VIVADO design involves two 
parts, programmable logic (PL) design and processing system 
(PS) design. The PS transfers the image data to and from the 
FPGA through AXI DMA IP core. The HLS IPs are 
controlled by the PS through AXI GPIO IP core. 

The PS passes an 8×8 pixel image data to the DCT IP 
through AXI DMA. The frequency domain output of the 
DCT IP is connected to the Filter IP. The Filter IP gets a filter 
selection input that comes from the PS through the AXI 
GPIO. The Filter IP filters the DCT output data depending 
upon the selector input. The filtered output of Filter IP is fed 
into the IDCT IP. The later converts the image data from 
frequency domain to spatial domain. The 64-pixel image data 
output of the IDCT IP are transferred to the PS through the 
AXI DMA. Both the output interface of the IDCT IP and the 
input interface of DMA IP are of type AXI-stream. However, 
the AXI-stream interface requires two additional signals, 
Tlast and Tkeep signals. Hence, a custom IP, i.e., Tlast gen 
IP, is developed to generate the Tlast and Tkeep signals with 
the help of the Tvalid signal of the IDCT IP output interface. 
The three HLS IPs need a start signal (e.g., logic high) in 
order to start operation. The start signal is sent by the PS 
through the AXI GPIO. 

A Xilinx SDK application is designed to communicate 
with the GUI over a UART serial port. The initial image data 
are transferred from the GUI to the FPGA. The IDCT output 
is read by the PS from the PL and passed to the GUI over the 
serial port. Hence, the PS mostly handles the data transfer and 
flow of operation of the PL design. 
 
3.2 Project Implementation in VIVADO 

Figure 16 shows the VIVADO block design project, which is 
composed of the PS, AXI DMA, AXI GPIO, DCT, IDCT, 
Filter and Tlast_gen IPs. The development of the DCT, IDCT 
and Filter IPs have been described in the previous section. In 
the following, we briefly introduce the rest IPs such as AXI 
GPIO, AXI DMA and Tlast_gen IP. Note that a few IPs are 
automatically generated during the project creation such as 
PS Reset, AXI Interconnect, AXI SmartConnect, which are 
more tightly integrated into the VIVADO design 
environment for automatic configuration with minimal user 
intervention. 

 AXI GPIO IP 

The PS controls the FPGA design flow through AXI 
GPIO. The processor needs to issue start signal to the DCT 
and IDCT IPs and filter selection signal to the Filter IP. 



  

Hence, one AXI GPIO channel with two-bit width will be 
used. Bit 0 is used for the filter selection and bit 1 is used to 
enable the DCT, Filter and IDCT IPs. As can be seen in 
Figure 16, the two-bit control signals are differentiated in the 
PL design using the Xlslice IP from the VIVADO library. 
The Xlslice IP core slices the bits as per requirement. 

 AXI DMA IP 

The Xilinx LogiCORE IP AXI DMA in the VIVADO 
library provides direct memory access between the DDR 
memory of PS and the AXI-stream peripherals of PL [36] 
through an AXI_lite interface. In this project, the DMA IP 
core is used to transfer the image data to the DCT IP and 
receive the processed image data from the IDCT IP. The 
DMA reads data directly from the DDR and writes the 
received data to the DDR. The PS must initiate the data 
transfer by setting the source address, destination address in 
the DDR and transfer length [37]. The DMA reads the data 
from source address and writes the data to destination 
address. Hence, both the DMA transmit and receive channels 
are enabled.   

The DMA IP has an AXI_lite interface to communicate 
with the PS. It has AXI stream interfaces to connect on the 
PL side. The M_AXIS_MM2S is a memory map to slave data 
output channel, which is connected to the image data input 
port of the DCT IP. The S_AXIS_S2MM is a slave to 
memory map AXI-stream data input channel, which is used 
to receive the processed image data from the IDCT IP. The 
M_AXI_S2MM is a slave to memory map interface and 
M_AXI_MM2S is a memory map to slave interface which 
connect to the high-performance port of the PS for data 
transfer through AXI smart connect IP core. 

 Tlast_gen IP 

As mentioned above, the DMA AXI-stream input 
interface needs two additional signals, Tlast and Tkeep 
signals, which are not directly generated from the AXI-
stream output interface of the IDCT IP. A custom IP is 
needed to generate the Tlast and Tkeep signals. The Tlast 
signal indicates the last word in the stream data transfer, 
which is generated by taking the Tvalid signal from the IDCT 
IP as input with shifting by a clock pulse. The Tkeep signal 
indicates the valid data bytes. In this design, the data width is 
32 bits (4 bytes), thus the Tkeep signal width is 4 bits. 
 
3.3 SDK Application Design 

The Xilinx SDK is an Integrated Development Environment 
(IDE) that works with VIVADO Design Suite. The PS in the 
ZedBoard controls the flow of the VIVADO design and 
performs serial communication with the GUI. Hence, an SDK 
application project needs to be created to work with the 
VIVADO project. The flowchart of the SDK application code 

is shown in Figure 17. The SDK application written by C 
language mainly performs following functions: 

- Initialize UART in interrupt mode 
- Initialize AXI DMA and AXI GPIO 
- Communicate with GUI over serial port to for 

commands, responses and image data 
- Transfer image data to and from PL through DMA 

 
UART Configuration: The PS UART in the Xilinx SDK has 
the default baud rate of 115200, data width 8bits, stop bit of 
1 and no parity. The UART interrupt is enabled so that an 
interrupt is generated when data are received on serial port. 
In Zynq FPGA SoC devices, there is a Generic Interrupt 
Controller (GIC) that controls the interrupt request from the 
peripherals [37]. The GIC is configured for monitoring the 
UART interrupt. The UART can generate an interrupt on 
multiple events. It includes an interrupt mask register that can 
enable or disable particular interrupt for the design [28]. A 
mask value is generated and loaded in the interrupt mask 
register that enables interrupt for receive_FIFO_full event, 
receive_FIFO_overflow event and Timeout error event. The 
Timeout error occurs when the receiver has remained idle for 
more than the time set in the timeout register.   
 
AXI DMA Configuration: The AXI DMA transfer 
functions in the SDK application are used to transfer image 
data to the PL and receive processed image data from the PL. 
The transfer completion is checked by polling whether the 
DMA transmit and receive channels are busy. Once the 
reception is completed, the HLS IPs are disabled, and the 
processed image data are printed to the serial port. Figure 18 
shows the code snippet showing DMA transferring and 
polling method. 
 
Communication Protocol Design: A communication 
protocol structure is developed to handle the data transfer 
between the GUI and the PS. There are three types of data 
transfer modes: filter setting, start transfer image, and image 
data matrix. The GUI issues commands and data and the PS 
issues responses. 

The communication protocol has the following command 
structure from the GUI to the PS.   

Command Format 

Header 
byte 1 

Header 
byte 0 

Length 
of data 

Command 
type 

Data      
(if any) 

Here Header byte 1 = 255 and Header byte 0 = 254, both are 
fixed for all commands. Length of data represents the length 
of data bytes in the packet. As there are only three types of 
commands, three possible lengths and corresponding 
command types are defined as shown in Table 1. The data 
field represents the data sent with a related command. This 



filed only exists in case of filter setting or image data 
commands. 

Table 1 Data length and command type fields in the protocol 
structure 

Command mode Data Length Command type 

Filter setting 1 123 

Start transfer image 0 222 

Image data matrix 64 111 

 
When the PS receives a command from the GUI, it will 

send a command response to the GUI. The response fields are 
separated by a comma character (CC) and the command 
response ends with a new line character (\n). The command 
response structure from the PS to the GUI has the following 
format.    

Command Response Format 

Header 
byte 

CC Command 
response type 

CC Data  
(if any) 

\n 

 
Here Header byte = 255, which is fixed for all commands. As 
there are three types of commands, the command response 
types will also be three, which are defined in Table 2. The 
data field is available only in the case of Image data matrix 
response, as in this case the processed image data are sent 
from the PS to the GUI. The image data bytes will be 
separated by comma character (CC). 

Table 2 Command response type field in the protocol structure 

Command mode Command type 

The filter setting response 123 

Start transfer image response 222 

Image data matrix response 111 

 
To handle the aforementioned communication protocol, 

the UART is configured in interrupt mode. The interrupt 
handler is set to read the received data and raise a flag once 
the data are read. The main function of the SDK application 
keeps checking for the data_receive event. When the 
data_receive flag is high, it indicates that there are data in the 
receive buffer. Then, the header bytes are checked and then 
the data length byte is checked. If the length byte is 64, it 
indicates that the received command is the image data; if the 
length byte is 1, it indicates that the received command is the 
filter setting; if the length byte is 0, it indicates that the 
received command is the start transfer image command. For 
each option, the processing detail is described in the 
flowchart in Figure 17.     
 

4 Design and Implementation of a GUI 

A GUI is designed using windows form application in .net 
framework [31]. Figure 19 shows the GUI panel developed 
in this project, which includes the following functionalities: 

- Communicating with the ZedBoard over the serial port 
- Setting the frequency 
- Loading image to process (from computer) 
- Transferring image data to the FPGA  
- Receiving image data from the FPGA 
- Display both the original and processed images 
 

The GUI running on a computer communicates with the 
ZedBoard through a UART serial port. The GUI panel 
includes Serial Port Settings, Select filter types, Load image 
button, Transfer image button, a Message box showing the 
messages during the flow of operation, and two picture boxes 
for displaying the original and processed images. The picture 
boxes are set to display images up to 512×512 pixels. When 
the user clicks on the Serial Port Settings menu, a separate 
form pops out as shown in Figure 20. The user can select the 
communication port, baud rate, and other options. The 
communication port number may differ for different devices. 
Click on the Apply Settings button to select the port settings. 

The Load Image button allows users to select a bitmap file 
from the computer. This project is designed for processing 8-
bit grayscale bmp images up to 512x512 pixels. The 
dimension of the image is considered to be square. If an 
image file is selected, it will be stored in a bitmap variable. 
The C# provides a Bitmap file structure to store the images. 
If the image is square in dimensions, it will be displayed in 
the original picture box; otherwise, an error message will be 
displayed. 

The image data will also be stored in another bitmap 
variable for further processing. A LockBits() function is used 
to lock the image data into memory. This function returns a 
Bitmap data structure, which includes a pointer to the first 
line of the image data. The pointer is read and used to copy 
the image data into a local array. Figure 21 provides the code 
snippet showing the image data copy process. A 
Marshal.Copy service is used to copy the image data array 
from the pointer to an unsigned 8-bit integer array. After 
copying the image data, the image is unlocked. A flag is set 
to indicate that an image is loaded in the memory. Here most 
of the variables are declared as public and static so that the 
variables can be modified and used in different function calls. 

Two radio buttons of the filter type settings are provided 
on the GUI. One is for low pass filter (by default) and the 
other for high pass filter. If the Transfer image button is 
clicked, an Image_Data_Loaded flag will be checked. If the 
flag is not set, If the flag is set, the transfer image command 
will be transmitted and the Processed Image picture box will 
be cleared (if any); otherwise, a message will be displayed to 
remind loading image.   



  

For every command, a response is expected from the 
FPGA. If there are data received on the serial port, the data 
will be read until the new line character and stored as a string. 
As shown in the command response format, the command 
response data bytes are separated by comma characters. The 
data length of the separated string array is checked. If the data 
length is two, the command response type will be checked. If 
the response type is Filter_setting, a message of filter type 
will be displayed in the message box. If it is 
Start_transfer_image, the index for Image_data_read will be 
initialized to zero and a Transmit_data() function will be 
executed, which transfers the image data matrix of size 8×8 
to the serial port.   

If the data length is 67 (header byte, command response 
byte, 64-byte image data, and the comma character at the end 
of the data), the command response type will be checked. If 
the type is Image_data_matrix, the received image data will 
be type-casted to byte and stored into a public byte array. The 
data are then added to the image array by calling the function 
Add_data(). Next, the index used to read and transmit the 
next matrix is incremented and the next matrix is transmitted 
using the Transmit_data() function call. If the indices have 
reached to the maximum limit, the processed image will be 
displayed using displayImage() function call. The flowchart 
of the C# program for the GUI is shown in Figure 22. 

 
5 System Operation and Results 

By putting it all together, we are now ready to run the whole 
project. We first run the synthesis and implementation of the 
VIVADO design and generate the bitstream file. We then 
connect the ZedBoard power cable, UART cable and USB-
JTAG cable as shown in the bottom-right of Figure 23. Make 
sure the jumpers are connected in the JTAG boot mode. 
Power on the ZedBoard and the power led should glow as 
green. Next, we export hardware and launch an SDK project 
from the VIVADO project and load the developed SDK 
application code. In the opened SDK window, perform the 
Program FPGA operation, the Done LED on the ZedBoard 
will glow as blue. Finally, right click on the SDK application 
and run “Launch on hardware”. The FPGA is ready to take 
commands from the GUI over the serial port.  

The following are the steps to operate the C# GUI and test 
the VIVADO design. 

 At the start of the GUI, a message dialog pops out 
reminding you to select a serial port, set the serial port 
using the Serial Port Settings Menu. 

 Click on Load Image button, select an image from a 
file dialog. 

 Select a filter type as per requirement. 

 Click Transfer Image and wait till the message box 
showing “Finished Processing”. 

 

The project is designed to process 8-bit grayscale bmp 
format images. The provided test files are of 256×256 and 
512×512 pixels. Note that the image data can be continuously 
transmitted from the FPGA to the GUI and vice versa, as 
shown from the two yellow LEDs in a running snapshot in 
Figure 23. Following are some of the test results. 

 
1) Image Size: 512×512; Filter Type:  Lowpass 

Figure 24 shows a kid image of size 512×512 processed 
by the lowpass filter. In the processed image, the edges such 
as the collar edge, pole outline and water wave outline can be 
observed to have blurred due to attenuating high frequencies. 
The sharp changes (edges) in the image corresponds to the 
high frequencies. When the high frequencies are attenuated, 
some edges will be blurred. For further image processing, one 
needs to analyze where most of the energy of the original 
image lies and then design an appropriate filter. For the kid 
image, we debugged internal data in program execution and 
observed that the maximum energy lies in the very small 
range of low frequency, hence most data of large energy 
passed the filter and the blurring was minimum. The energy 
distribution differs for different images. For the power 
adapter image in Figure 25, the energy distribution tends to 
diverge towards the high frequency, so the blurring tends to 
be more obvious, e.g., the adapter information surface. To 
vary the blurring in the image, an appropriate analysis of the 
image energy should be done. 

 
2) Image Size: 512×512; Filter Type: Highpass 

Figure 26 shows the kid image of size 512×512 processed 
by the highpass filter. The edges in the image show the high 
frequency components. As can be observed, attenuating 
lower frequencies keeps only most of the edges in the 
processed image and filters out the smooth regions. Again, to 
vary the high frequency contents in the image, an appropriate 
analysis of the image energy should be done and specific 
filters can be designed accordingly. A similar result can be 
observed for the power adapter image of size 512×512 in 
Figure 27. 

 
For the images with size of 256×256 and lowpass and 

high pass filters, similar results can be obtained in Figures 28, 
29, 30 and 31. 
 
6 Conclusions 

This paper developed a DCT/IDCT based image 
processing system on the FPGA for processing 8-bit 
grayscale images. The DCT and IDCT were designed, 
optimized and implemented in the VIVADO HLS for 
converting spatial domain image data to frequency domain 
and frequency domain image data to spatial domain 
respectively. To understand the frequency domain data 
processing, a basic filter logic was deigned to attenuate either 



high frequencies or low frequencies in the frequency domain 
of image data. The latency performance has been 
significantly improved for the DCT from 157.18 μs to 5.10 
μs, for the IDCT from 121.98 μs to 4.88 μs, and for the filter 
from 4.35 μs to 1.67 μs. A VIVADO design was developed 
to validate the DCT, IDCT and Filter HLS IPs. The VIVADO 
project was targeted for the ZedBoard. The Zynq FPGA 
processor was configured to pass the spatial domain image 
data to and from DCT and IDCT IPs. A GUI was developed 
using C# for controlling the flow of operation and visualizing 
the images. Finally, the integrated system was tested with 
various 8-bit grayscale images and experimental results were 
presented with discussion. For the future work, we consider 
to include the system implementation with more complicated 
image processing techniques instead of the basic filter logic 
in the integrated system.  

This paper provided hands-on experience on FPGA based 
HLS IP design, optimization and implementation as well as 
the modular-style VIVADO project development method, 
which can be extended to a wider range of FPGA 
applications.  
 
Acknowledgement 

The authors would like to acknowledge the support of the 
project development from St Cloud State University, MN, 
USA through the Early Career Grant (No. 211129) and the 
support from the Department of Electrical and Computer 
Engineering through providing its equipment and software. 
 
References 

[1] N. Ahmed, T. Natarajan, and K.R. Rao, "Discrete Cosine 
Transform", IEEE Transactions on Computers, Vol. C-23, pp. 
90–93, Jan. 1974. 

[2] S. Brown and J. Rose, "FPGA and CPLD architectures: A 
tutorial", IEEE Design and Test of Computers, 13(2):42–57, 
1996.  

[3] V. Venkataramanan, S. Lakshmi, and V. A. Kanetkar, "Design 
and implementation of LTE physical layer on FPGA", 
International Journal of Computer Applications in Technology, 
Vol. 61, No. 1-2, pp. 127-134, 2019. 

[4] W. M. El-Medany, "Reconfigurable CRC IP core design on 
Xilinx Spartan 3AN FPGA", International Journal of Computer 
Applications in Technology, Vol. 55, No. 4, pp. 257-265, 2017. 

[5]  S. Vaidyanathan, E. Tlelo-Cuautle, A. Sambas, L. G. Dolvis; O. 
Guillén-Fernández, "FPGA design and circuit implementation 
of a new four-dimensional multistable hyperchaotic system 
with coexisting attractors", International Journal of Computer 
Applications in Technology, Vol. 64, No. 3, pp. 223-234, 2020. 

[6]  R. Nane, V.M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y.T. 
Chen, H. Hsiao, and S. Brown, "A Survey and Evaluation of 
FPGA High-Level Synthesis Tools", IEEE Transactions on 
Computer-Aided Design of Integrated Circuits and Systems. 
35 (10): 1591–1604, 2016. 

[7]  Xilinx, Inc, “Vivado Design Suite User Guide: High-Level 
Synthesis”, UG902, v2020.1, June 2020. 

[8]  G. Bertocci, B.W. Schoenherr, and D.G. Messerschmitt, "An 
Approach to the Implementation of a Discrete Cosine 
Transform," IEEE Transactions on Communications, Vol. 
Com-30, No. 4, pp. 635-641, April 1982.  

[9]  L.-T. Ko, J.-E. Chen, H.-C. Hsin, Y.-S. Shieh, and T.-Y. Sung, 
“A unified algorithm for subband-based discrete cosine 
transform,” Mathematical Problems in Engineering, vol. 2012, 
Article ID 912194, 2012.  

[10] M. Jridi, Y. Ouerhani, and A. Alfalou, “Low complexity DCT 
engine for image and video compression", Real-Time Image 
and Video Processing, vol. 8656, pp. 1–9, 2013.  

[11] S.E. Tsai, S.M. Yang, "A Fast DCT Algorithm for 
Watermarking in Digital Signal Processor", Mathematical 
Problems in Engineering, vol. 2017, Article ID 7401845, 2017. 
https://doi.org/10.1155/2017/7401845 

[12] R.J. Cintra and F.M. Bayer, "A DCT Approximation for Image 
Compression," IEEE Signal Processing Letters, vol. 18, no. 10, 
pp. 579-582, Oct. 2011.  

[13] S. Sanjeevannanavar and A. N. Nagamani, "Efficient design 
and FPGA implementation of JPEG encoder using verilog 
HDL", International Conference on Nanoscience, Engineering 
and Technology (ICONSET 2011), Chennai, India, pp. 584-
588, 2011. DOI: 10.1109/ICONSET.2011.6168038. 

[14] D. Coelho, S. Nimmalapalli, V. Dimitrov, A. Madanayake, 
Renato Cintra, and A. Tisserand, "Computation of 2D 8x8 
DCT Based on the Loeffler Factorization Using Algebraic 
Integer Encoding", IEEE Transactions on Computers, Vol. 67, 
NO. 12, pp. 1692-1702, 2018.  

[15] B. Denis, J. Côté, and R. Laprise, "Spectral Decomposition of 
Two-Dimensional Atmospheric Fields on Limited-Area 
Domains Using the Discrete Cosine Transform (DCT)", 
Monthly Weather Review, Vol. 130, No. 7, pp. 1812–1829, 
July 2002.  

[16] I. Ito, "A New Pseudo-Spectral Method Using the Discrete 
Cosine Transform", Journal of Imaging, Vol. 6, No. 4, Article 
15, 2020. https://doi.org/10.3390/jimaging6040015  

[17] P. Telagarapu, B. Biswal and V. S. Guntuku, "Design and 
analysis of multimedia communication system", 2011 Third 
International Conference on Advanced Computing, Chennai, 
India, pp. 193-197, 2011. DOI: 10.1109/ICoAC.2011.6165174    

[18] Y. Wang and G. Zhang, "Compressed Wideband Spectrum 
Sensing Based on DiscreteCosine Transform", The Scientific 
World Journal, Vol. 2014, Article ID 464895, 2014. 
http://dx.doi.org/10.1155/2014/464895    

[19] Z.M. Hafed and M.D. Levine, "Face Recognition Using the 
Discrete Cosine Transform", International Journal of 
Computer Vision, 43(3), pp. 167–188, 2001. 

[20] E. Magli and D. Taubman, “Image compression practices and 
standards for geospatial information systems,” in IEEE 
International Geoscience and Remote Sensing Symposium, 
Vol. 1, pp. 654–656, Jul. 2003. 

[21] A. Solichin and E. W. Ramadhan, "Enhancing data security 
using DES-based cryptography and DCT-based 
steganography", 2017 3rd International Conference on Science 
in Information Technology (ICSITech), Bandung, Indonesia, 
pp. 618-621, 2017. DOI: 10.1109/ICSITech.2017.8257187  

[22] W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Data 
Compression Standard.  NewYork, NY: Van Nostrand 
Reinhold, 1992. 



  

[23] International Organization for Standardization, “Information 
technology - Generic coding of moving pictures and 
associated audio information - Part 2: Video”, ISO/IEC 
13818-2:2013. https://www.iso.org/standard/61152.html  

[24] K. Rijkse, "H.263: video coding for low-bit-rate 
communication," IEEE Communications Magazine, Vol. 34, 
No. 12, pp. 42-45, Dec. 1996, doi: 10.1109/35.556485.  

[25] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, 
“Overview of the H.264/AVC videocoding standard”, IEEE 
Trans. Circuits Syst. Video Technol., Vol. 13, No. 7, pp. 560–
576, July 2003. 

[26] C. Loeffler, A. Ligtenberg, and G. Moschytz, “Practical fast 1D 
DCT algorithms with 11multiplications”, International 
Conference on Acoustics, Speech, and Signal Processing, Vol. 
2, pp. 988–991, May 1989. 

[27] E. Feig and S. Winograd, “Fast algorithms for the discrete 
cosine transform”, IEEE Trans.Signal Process., Vol. 40, No. 9, 
pp. 2174–2193, Sep. 1992. 

[28] Xilinx, Inc, “Zynq-7000 SoC: Technical Reference Manual”, 
UG585, v1.12.2, July 2018. Available: 
https://www.xilinx.com/support/documentation/user_guides/u
g585-Zynq-7000-TRM.pdf   

[29] Xilinx, Inc, “Vivado Design Suite User Guide: Using the 
Vivado IDE”, UG893, v2020.1, June 2020. Available: 
https://www.xilinx.com/support/documentation/sw_manuals/
xilinx2020_1/ug893-vivado-ide.pdf 

[30] Digilent, Inc, "ZedBoard Hardware User’s Guide", Ver 2.2, 
January 2014.  Available: 
http://zedboard.org/sites/default/files/documentations/ZedBoa
rd_HW_UG_v2_2.pdf 

[31] Microsoft Corp., Visual Studio 2019. Available: 
https://visualstudio.microsoft.com/   

[32] Xilinx, Inc, “Getting Started with Xilinx SDK”, v2016.2.  
        Available: 

https://www.xilinx.com/html_docs/xilinx2016_2/SDK_Doc/i
ndex.html 

[33] B.H. Shakibaei Asli, J. Flusser, Y. Zhao, J.A. Erkoyuncu, K.B. 
Krishnan, Y. Farrokhi, and R. Roy, "Ultrasound Image 
Filtering and Reconstruction Using DCT/IDCT Filter 
Structure", IEEE Access, Vol. 8, pp. 141342-141357, 2020, 
doi: 10.1109/ACCESS.2020.3011970.  

[34] B. Hahn and D. Valentine, Essential MATLAB for Engineers 
and Scientists, 7th Edition, Academic Press; April 2019. 

[35] Xilinx, Inc, “Vivado Design Suite: Vivado AXI Reference”, 
UG1037, v4.0, July 2017. Available: 
https://www.xilinx.com/support/documentation/ip_documenta
tion/axi_ref_guide/latest/ug1037-vivado-axi-reference-
guide.pdf 

[36] Xilinx, Inc, “AXI DMA v7.1: LogiCORE IP Product Guide”, 
June 2019.  Available: 
https://www.xilinx.com/support/documentation/ip_documenta
tion/axi_dma/v7_1/pg021_axi_dma.pdf 

[37] M.A. Enderwitz, R.A. Elliot, C.H. Louise, and R.W. Stewart, 
The Zynq Book: Embedded Processing with the ARM Cortex-
A9 on the Xilinx Zynq-7000 All Programmable SoC, First 
Edition, Strathclyde Academic Media, 2014. 

 
 
 
 
 
 

 

 

 

Appendix 

 

 

 
 

Fig 1. Algorithm of the 2d DCT computation and part implementation code 

 



 

                          
Fig 2. Comparison of DCT results from HLS C simulation and                 
MATLAB calculation for the first 8×8 matrix of the image data            Fig 3. HLS PIPELINE directive applied to DCT loops 

 
 
 
 

                       
 
Fig 4. ARRAY_PARTITION and INTERFACE directives                    Fig 5. DCT performance comparison with and without  
          applied to DCT loops                                                                                 HLS optimization 
 
 
 
 

 
 

Fig 6. Loop latency of the DCT logic after applying the directives 

 



  

 
 

Fig 7. The DCT logic RTL simulation waveforms 
 

                      
 

              Fig 8. C simulation for the filter logic                                            Fig 9. Filter performance comparison with and  
                                                                                                                                without optimization 
 

 

Fig 10. The filter logic RTL simulation waveforms 

                           

      Fig 11. C simulation for the IDCT logic                                                  Fig 12. IDCT performance comparison with and  
                                                                                                                                    without optimization 



 

 

Fig 13. Loop latency of the IDCT logic after applying the directives 

 

 
 

Fig 14. The IDCT logic RTL simulation waveforms 

 
 

 

 
 

Fig 15. The VIVADO project block diagram 



  

 
 

Fig 16. The VIVADO project system construction 

 
 

 
 

Fig 17. Flowchart of the SDK application code 

 
 



 
Fig 18. AXI DMA transfer code snippet 

 

 
 

Fig 19. The GUI panel for communicating with the ZedBoard 

 

 
 

Fig 20. The serial port settings menu 

 

Fig 21. Image data read and stored in array 



  

 
 

 
 

Fig 22. Flowchart of the C# program for the GUI 
 



 
 

Figure 23. The ZedBoard in running 

 

 
 

Fig 24. Kid image of 512×512 with lowpass filter 



  

 
 

Fig 25. Power adapter image of 512×512 with lowpass filter 

 
 
 

 
 

Fig 26. Kid image of 512×512 with highpass filter 

 
 



 
 

Fig 27. Power adapter image of 512×512 with highpass filter 

 
 
 
 
 
 

 
 

Fig 28. Kid image of 256×256 with lowpass filter 

 
 



  

 

 
 

Fig 29. Power adapter image of 256×256 with lowpass filter  

 
 
 
 
 
 
 
 

 
 

Fig 30. Kid image of 256×256 with highpass filter  

 



 
 

Fig 31. Power adapter image of 256×256 with highpass filter  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  
 
 


