
Int. J. Xxxxxx Xxxxxxx Xxxxxxx, Vol. X, No. Y, XXXX

Copyright © 201x Inderscience Enterprises Ltd.

FPGA Based DFT System Design, Optimization and Implementation Using High-
Level Synthesis

Shensheng Tang*1, Monali Sinare2, Yi Xie3
1Department of Electrical and Computer Engineering, St. Cloud State University, St.
Cloud, MN 56301, USA; stang@stcloudstate.edu

2Department of Electrical and Computer Engineering, St. Cloud State University, St. Cloud, MN
56301, USA; mksinare@go.stcloudstate.edu

3School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou 510006,
China; xieyi5@mail.sysu.edu.cn

*Corresponding author

Abstract: In this paper, a discrete Fourier transform (DFT) algorithm is designed and optimized
for the FPGA implementation using the Xilinx VIVADO High-Level Synthesis (HLS) tool. The
DFT algorithm is written by C++ programming and simulated for functional verification in the
HLS and MATLAB. For hardware validation, the DFT module is packaged as an IP core and tested
in a VIVADO project. A Xilinx SDK application written by C language is developed and used for
testing the DFT module on a Zynq FPGA development board, ZedBoard. For visualization of the
DFT magnitude spectrum generated in FPGA, a GUI is developed by C# programming and related
commands/data can be communicated between the GUI and ZedBoard over the serial port.
Experimental results are presented with discussion. The DFT module design, optimization and
implementation as well as the VIVADO project development methods can be extended to other
FPGA applications.

Keywords: FPGA; DFT; IP core; VIVADO HLS; C/C++; Verilog; C#; Optimization; Hardware
Validation.

Reference to this paper should be made as follows: Tang, S., Sinare, M., and Xie, Y. (20xx) ‘FPGA
Based DFT System Design, Optimization and Implementation Using High-Level Synthesis’, Int.
J. Computer Applications in Technology, Vol. xx, No. xx, pp.xxx–xxx.

Biographical notes: Shensheng Tang is an Associate Professor in the Department of Electrical
and Computer Engineering in St. Cloud State University, USA. He received his Ph.D. from
University of Toledo, USA. He has eight years of product design and development experience, as
hardware engineer, system engineer, and manager respectively, in the electronics and wireless
industry. His current research interests include embedded systems, networking (wireless, wired),
Internet of things (IoT), and modelling and performance evaluation. He has served or is serving as
editor or guest editor for international journals and technical program committee (TPC) member
of international conferences. He has produced about 100 peer-reviewed publications in the above
areas. He is a senior member of IEEE.

Monali Sinare is a student at the Department of Electrical and Computer Engineering, St. Cloud
State University, Minnesota, pursuing a Master of Science in Electrical Engineering. She has
received a Master of Science degree in Electronics Science from Savitribai Phule Pune University,
Pune, Maharashtra, India, in 2007. She has nine years of experience in FPGA based control system
design and development. She has worked on the design and development of Verilog and VHDL
modules, testing, and integration of various submodules for FPGA based systems designed for
control and monitoring of medical instruments. Her research interests include digital signal
processing, image processing, high-level synthesis, hardware-software co-design, and embedded
systems.

Dr. Yi Xie is currently an associate professor at the School of Computer Science and Engineering,
Sun Yat-sen University. He received the B.S., M.E. and Ph.D. degrees from Sun Yat-sen
University, Guangzhou, China. He was a visiting scholar at George Mason University and Deakin
University during 2007 to 2008, and 2014 to 2015, respectively. He won the outstanding doctoral
dissertation award of the Chinese Computer Federation (CCF) in 2009. His recent research interests
include networking, cyber security and behavior modeling. Some of his works have been published
in IEEE top journals, such as ToN, TPDS, TBD, TCSS and Sensors. He has received eight research
grants and has served as a young Associate Editor for a Springer journal named Frontiers of
Computer Science.

Int. J. Xxxxxx Xxxxxxx Xxxxxxx, Vol. X, No. Y, XXXX

Copyright © 201x Inderscience Enterprises Ltd.

1 Introduction

Parallel processing in case of designs involving complex
computation and processing of large datasets can improve the
performance of the design with respect to speed of the
computation. FPGAs (Field-Programmable Gate Arrays) [1]
provide large scale programmable logic arrays which can be
used for parallel programming. The FPGA techniques have
been applied to many areas such as electronic circuit
implementation [2] and telecommunication systems [3].
Moreover, the availability of high-level synthesis (HLS) tools
[4] makes it easier to develop designs targeted for FPGAs
using high level programming languages such as C/C++.
Discrete Fourier transform (DFT) [5] is one of the most
powerful tools in a large number of fields such as spectrum
analysis [6]-[9], fast convolution [10]-[12], data compression
[13]-[15], polynomial multiplication [16][17], and matrix
multiplication [18][19].

Spectrum analysis is an important DFT application for
practical computation of the frequency content of real-world
signals. In [6], algorithms for the nonuniform-time discrete
Fourier transform (NUT-DFT) were developed and evaluated
for taking nonuniform-time domain signals and producing a
uniform sampled spectrum. In [7], a fast Fourier transform
(FFT) was used in the spectral analysis of
Electroencephalography (EEG) signals for the detection of
alpha rhythm in subjects with open and closed eyes. In [8],
the robustness of the warped discrete Fourier transform
(WDFT)-based cepstral features was investigated for
continuous speech recognition with the speech spectrum
warped using the Mel-scale filterbank. In [9], the sliding
window algorithm was applied in computing the discrete time
fractional Fourier transform (DTFrFT) and the hopping
DTFrFT algorithm was proposed to obtain a continuous
fractional spectrum.

DFT has been considered by the machine learning
community to be a natural approach to fast convolution [10].
In [11], an algorithm of computing convolutions using
discrete Fourier transforms was presented to accelerate
training a large convolutional network by a significant factor
compared to existing state-of-the-art implementations. In
[12], spectral representations were employed to model and
train convolutional neural networks (CNNs).

In [13], a block-encoding method based on a windowed
Discrete Fourier Transform (DFT) was proposed to improve
the coding efficiency for the transfer of compressed data in
sensor networks. In [14], Stochastic Compressive Data
Aggregation (S-CDA) was used for wireless sensor networks
under random deployment. The random deployment was
modelled by the Poisson point process and the signal
recovery was based on the random discrete Fourier transform
(RDFT) which reveals the frequency content of smooth
signals, such as temperature or humidity maps. In [15], an
algorithm of adaptive bit encoding was proposed for

electrocardiogram (ECG) data compression using the
conventional discrete Fourier transform. The simplicity and
low cost infrastructural requirement of the algorithm makes
it suitable for implementation on an embedded platform to be
used in mobile devices.

In [16], a truncated version of the classical Fast Fourier
Transform was presented to be used for polynomial
multiplication and the multiplication of multivariate
polynomials, and a logarithmic factor was gained with
respect to previously known algorithms. In [17], the Fast
Fourier Transform (FFT) with a linearithmic complexity of
𝑂ሺ𝑛 𝑙𝑜𝑔𝑛ሻ was exploited in the design of a high-speed
polynomial multiplier. A constant geometry FFT datapath
was used in the computation to simplify the control of the
architecture. In addition, some generalized discrete Fourier
transforms are studied in matrix multiplication. In [18], one-
dimensional and two-dimensional generalized discrete
Fourier transforms were shown to require the same number
of operations to be computed on a vector and matrix if the
vector is fractured into the matrix. In [19], a unified approach
of the generalized discrete Fourier transform (GDFT)
matrices was investigated for the computation of family of
discrete sinusoidal transforms.

In this paper, a DFT module is designed and optimized
for FPGA using Xilinx VIVADO HLS tool [20] as well as
implemented in the HLS for Xilinx Zynq-7020 SoC (System
on Chip) device [21]. The DFT algorithm written by C++
programming is simulated for functional verification in the
HLS and packaged as an IP (Intellectual Property) core for
hardware validation in a VIVADO project (via VIVADO
Design Suite [22]) and tested on a Zynq FPGA development
board, ZedBoard [23]. For visualization of the DFT
magnitude spectrum generated in the FPGA, a graphical user
interface (GUI) is designed by C# programming through
Visual Studio IDE [24] for sending commands to the
ZedBoard and receiving the processed DFT data from it over
a UART (Universal Asynchronous Receiver Transmitter)
serial port. The Xilinx DDS compiler IP core [25] is modified
along with custom logic to generate the sinusoidal data
samples. The main contribution of the paper is detailed as
follows:

 Design and develop a DFT module using VIVADO HLS
with the algorithm written by C++ code.

 Simulate and verify the functional behaviour of the DFT
module using data generated from MATLAB [26].

 Optimize the DFT design by applying various HLS
directives, and perform synthesis and C/RTL Co-
simulation for functional verification as well as package
the design as a DFT IP (ready to be used at a VIVADO
project).

 Design and develop a VIVADO project to test the
developed DFT IP core.

 Develop other IPs (DDS IP, FIFO IP and Tlast generator
IP) for the VIVADO project to make it as a complete
testing system.

 Develop a Xilinx SDK (Software Development Kit) [27]
application program by C language, which works with
the hardware design created with VIVADO Design
Suite.

 Design and develop a C# GUI to test the VIVADO
project on ZedBoard and visualize the results.

The remainder of the paper is organized as follows:
Section 2 describes the design, optimization and
implementation of the DFT module; Section 3 details the
design and implementation of a VIVADO project (system)
on the FPGA that incorporates the DFT module and other IPs;
Section 4 implements a GUI using C# programming that
communicates with the FPGA design; Section 5 presents the
hardware/software system operation and experimental
results; Finally, Section 6 concludes the paper.

2 Design, Optimization and Implementation of

the DFT Module

2.1 DFT Basics

DFT is used to convert a discrete time domain signal into
its corresponding frequency domain representation and vice
versa. The conversion of a time domain signal into frequency
domain is called DFT or forward DFT. The conversion of a
frequency domain signal into time domain is called inverse
DFT. If x(n) is a discrete signal of length N, its corresponding
frequency domain representation using DFT is expressed as

 X[k] = ∑ 𝑥ேିଵ
ୀ ሾ𝑛ሿ𝑒ି

మഏ
ಿ , for k = 0, 1…., N-1. (1)

The frequency domain representation involves complex
values and is usually represented as the real and imaginary
parts, which can be calculated separately:

 X[k] = ∑ 𝑥ேିଵ
ୀ ሺ𝑛ሻ 𝑐𝑜𝑠 ቀଶగ

ே
𝑘𝑛ቁ െ ∑ 𝑥ேିଵ

ୀ ሺ𝑛ሻ𝑗 𝑠𝑖𝑛 ቀଶగ
ே
𝑘𝑛ቁ.

 (2)

The magnitude information of the input signal in
frequency domain can be calculated as

 Real:

 𝑅ሺ𝑘ሻ ൌ ∑ 𝑥ேିଵ
ୀ ሺ𝑛ሻ 𝑐𝑜𝑠 ቀ

ଶగ

ே
𝑘𝑛ቁ, for k = 0,1, …, N-1. (3)

Imaginary:

 𝐼ሺ𝑘ሻ ൌ െ∑ 𝑥ேିଵ
ୀ ሺ𝑛ሻ 𝑠𝑖𝑛 ቀଶ

ே
𝑘𝑛ቁ, for k = 0, 1, …, N-1. (4)

Magnitude:

 |𝑋ሺ𝑘ሻ| ൌ ඥ𝑅ଶሺ𝑘ሻ 𝐼ଶሺ𝑘ሻ , for k = 0, 1, …, N-1. (5)

2.2 DFT Module Design and Simulation in HLS

The DFT module design takes N sample points as input
and produce the corresponding DFT magnitude data. The
algorithm of the DFT flow in VIVADO HLS is shown in
Figure 1 along with the DFT calculation loop implemented
by C/C++ programming. The input data points are read
through a memory interface and stored locally. The sine and
cosine coefficient matrices are stored in a local memory as
half precision, which is 16-bit floating point numbers. The
coefficients are read as signed fixed-point numbers with
precision <16, 2>, which means 16 bit data with 2 bits
representing numbers on the left side of the decimal point and
14 bits representing numbers on the right side. The input data
are considered as signed 16-bit integer data. The fixed-point
multiplication of the two variables local_in (a 16 bit signed
integer) and temp_c or temp_s with precision <16, 2>
generates a fixed-point result with precision <32, 18>. To use
the fixed-point data type, the ap_fixed.h library provided in
the HLS is used [20]. To use arbitrary integer precision, the
ap_int.h library in the HLS is used [20]. After the execution
of the inner loop, the real and imaginary data are used to
calculate the DFT magnitude data based on Equation (5).
Here the real and imaginary values are of 32-bit integers,
hence the result of multiplication is stored in 64-bit integer
variables (r3 and r4 in Figure 1). Finally, the square root
function is used to calculate the 64-bit sum. In the HLS, the
square root function is not defined for arbitrary integer
precision, hence long integer type casting is used.

For C simulation, a testbench is written by C++ language.
The input of the testbench includes 200 data points of a 100
Hz sinusoidal wave with amplitude of 104 and sampling
frequency of 1 kHz generated by MATLAB. The testbench
code calls the DFT function that is implemented in the HLS
according to Figure 1 and generates corresponding DFT
results. The results are printed on the console of the HLS
software and used for comparison with the MATLAB
simulation. Figure 2 compares the DFT data generated from
the HLS logic and from the fft() function in MATLAB under
the same input signal with multiple frequencies (100 Hz, 250
Hz, and 400 Hz). It is observed that the plots from both the
HLS logic and the MATLAB simulation are perfectly
matched in all three testing frequencies.

2.3 DFT Module Optimization and Package in HLS

The above C simulation verifies the correctness of the
DFT algorithm design. It is now ready to do the synthesis on
the DFT module. The latency of the design is in millisecond
level due to the nested loops as shown in Figure 3. We can
apply various HLS directives [20] to the DFT design for
optimization. By analysis, we know there are three main
loops in the DFT logic, RD_loop, Outer_loop and WR_loop.
The RD_loop reads N data points from the input interface and
WR_loop writes N/2 output data points to the output
interface. The outer_loop has an inner_loop inside it which

has a tripcount of N. The outer_loop has a trip count of N/2.
From initial tries, the inner_loop needs 2 DSP slices and the
outer_loop takes 6 DSP slices for implementation. This
introduces the limitation for unrolling the loops completely,
since the targeted device ZedBoard has only 220 DSP Slices.
Additionally, the outer_loop is dependent on the inner_loop.
By considering the dependency and device limitation, we
choose to unroll the inner_loop by a factor of 10 (the larger
the factor, the more usage of the FPGA resources). The
WR_loop reads the 32-bit data from the local memory and
writes the data to the output interface. Applying the
PIPELINE directive is better than the UNROLL directive in
terms of latency. For the input and output data interface, the
AXI-stream interface (specified as axis) is used [28]. As the
sine and cosine coefficients are stored as constants, a single
port ROM is used to store the coefficients. Figure 3 shows
different directives applied to the elements of the design
logic.

After the optimization processing is performed, the
latency of the logic is reduced from 1.43 ms to 366.05 μs.
Figure 4 shows the performance comparison of the latency of
the DFT module, where solution 1 is the performance
estimate before applying the directives and solution 2 is after
applying the directives. Figure 5 shows the loop latency in
the design. There are 200 data points in the simulation, the
default trip count for inner_loop is 200. As the inner_loop is
unrolled by a factor of 10, the 200 iterations are divided into
10 parts and thus the trip count is 20.

Finally, the C/RTL co-simulation is run to verify the
functionality in the register-transfer level (RTL). The co-
simulation report shows that the duration taken for the DFT
calculation is 366.05 μs from the time instant of reading input
to the instant of writing output, which can also be found in
the RTL simulation waveforms generated in a pop-out
VIVADO window (which is triggered from HLS), as shown
in Figure 6. This shows that the DFT design is successful and
ready to be packaged as a custom IP by the HLS. The DFT
IP can be added to a VIVADO repository and will be used by
a VIVADO project for system construction.

3 Design and Implementation of a VIVADO Project

3.1 Design Description

In order to validate the DFT IP packaged by the HLS, a
testing system is developed through building a VIVADO
project. Figure 7 shows the block diagram of the VIVADO
project including the DFT IP and a few other IPs for the
project. The VIVADO design incorporates two parts, the
programmable logic (PL) design and the processing system
(PS) design. The DFT IP is integrated in the PL logic design
along with the test data generation and data transfer logic.
The PS monitors and controls the flow of the PL design.

As the DFT IP is designed to take digitized signal samples
as the input, the Xilinx DDS compiler IP core is modified to
generate the sinusoidal data. The DFT IP needs N data
samples and has the AXI-stream interface at input. Hence, a
combinational logic is introduced to store N consecutive data
samples generated from the DDS to an AXI-stream data
FIFO IP. Once the N data samples are written into the FIFO
IP, the DFT IP is started. The DFT IP reads the sample points
stored in the FIFO and calculates the DFT magnitude. Once
the calculation is completed, the DFT output is sent to the
processor through a DMA (Direct Memory Access) IP core
[29]. Both the output interface of the DFT IP and the input
interface of the DMA IP are of AXI-stream type. However,
the DMA input interface needs two additional signals: Tlast
and Tkeep signals. Hence, a custom IP (i.e., Tlast generator
IP) is developed to generate Tlast and Tkeep signals to work
with the Tvalid signal of the DFT IP output interface. The
N/2 output data points from the DFT IP output are sent to the
PS through the DMA IP. The PS transfers the data to the GUI
over the serial port for display.

3.2 Project Implementation in VIVADO

Figure 8 shows the VIVADO block design. The PS
provides 100 MHz clock and a reset signal to the PL design.
The PS communicates with the PL side IPs through the AXI-
Lite interface. The DMA IP is connected to the PS through
the high performance AXI port (S_AXI_HP0). The
DDS_sinegen IP is connected to the PS through the AXI-Lite
interface for receiving the sine wave frequency settings. The
output of the DDS_sinegen IP is connected to the
AXIS_data_fifo. The DFT IP reads input data from the FIFO
port. The data transfer from the DDS IP to the DFT IP is
controlled and monitored by the PS using an AXI GPIO IP
and a combinational logic implemented from the utility
vector logic blocks. The output of the DFT IP is passed to the
DMA IP through the Tlast_gen IP. The DMA IP transfers the
DFT data to the PS. Each block in the design is briefly
described as follows.

 DDS_sinegen IP

This is a custom AXI-Lite Slave IP core which includes
the Xilinx LogicCORE DDS IP core along with custom logic.
It has the following ports:

- AXI-Lite slave interface: connected to the processor for
controlling data input.

- data_enable: input signal to control the output data to be
valid.

- fifo_ready_in: input signal coming from the AXI‐stream
data FIFO IP, which sends the data out only when this
port is ready to take the data input.

- Sig_out[15:0]: 16 bit sinusoidal waveform data output.
- fifo_sig_valid: valid signal for data output.

The Xilinx LogicCORE DDS IP has the phase parameter
to the sinusoidal waveform data generator. With appropriate
phase setting, the DDS IP generates the sinusoidal waveform
samples with a specific frequency [25]. In this design, the
input samples are generated internally by the DDS IP. The
DDS IP core needs a phase increment value to be set to
convert it to the sinusoidal waveform. With an appropriate
phase increment value, the output frequency is given by
following equation:
 𝑓௨௧ ൌ 𝑓 ∙ ∆𝜃/2, (6)

where 𝑓௨௧ is the output frequency, 𝑓 is the system clock
frequency (which is 100 MHz in the design), ∆𝜃 is the phase
increment value and B is the phase width that is the number
of bits used to set the phase increment value.

The frequency resolution can be achieved by

 ∆𝑓 ൌ 𝑓/2 . (7)

In this design, the system clock is 100 MHz. When the
phase width is set as 26, the resolution will be obtained as
1.49 Hz. The phase increment value needs to be entered to
get the desired frequency output. The phase increment value
for a given frequency can be calculated as

 ∆𝜃 ൌ 𝑓௨௧ ∙ 2/𝑓 . (8)

For example, for a 2 MHz sinusoidal output waveform,
the phase increment value to be entered is ∆𝜃 ൌ 2𝑀𝐻𝑧 ∙
2ଶ/100𝑀𝐻𝑧 ൌ 1342177. The DDS IP core is configured
as shown in Figure 9.

In this design, the frequency generation from the DDS IP
core is controlled by the GUI through the processor. Since the
corresponding phase increment value is transferred from the
processor to DDS IP core, the DDS IP core is added to a
VIVADO design with AXI-Lite slave interface and packaged
as an IP (i.e., DDS_sinegen IP). In the AXI-Lite slave
interface code, the 0th bit of slave register0 is used as valid
signal and slave register1 is used for entering phase data
value. Figure 10 shows the slave register connections to the
phase data input of the DDS IP core. A custom logic is added
to control the data to be valid at the output. It takes a data
enable signal input that is controlled from the processor along
with a combinational logic so that it stays logic high only for
the period of N data samples. Here N is set as 200 in the
experiment.

 AXI FIFO IP

The sinusoidal waveform sample data are stored in an
AXI-stream data FIFO. This FIFO has AXI-stream interface
for input as well as output. The FIFO IP is configured for 16-
bit 256 words depth. A programmable full signal is enabled
for which the threshold is set at 199. Here the FIFO IP gives
the first word by default at the output interface, thus an
additional value of 199 is set for 200 data words.

 AXI DMA IP

The AXI DMA IP in the VIVADO library provides the
direct memory access between the DDR memory and the
AXI-stream peripherals of the PL side [29] through an
AXI_Lite interface. In this design, the DMA IP is used to
transfer the DFT IP output data to the processor. The DMA
writes the data directly to the DDR, from which the processor
can read the data and send them to the GUI via the serial port
for display. The processor must initiate the data transfer by
setting the source address, destination address in the DDR,
and the transfer length [30]. The DMA reads the data from
the source address and writes the data to the destination
address.

The DMA IP core has two channels (i.e., read and write)
for data transfer; only one channel can be enabled at one time.
In this design the data is only transferred from the PL to the
DDR, thus only write channel is enabled.

 Tlast_gen IP

The DMA AXI-stream input interface needs two
additional signals, i.e., Tlast and Tkeep signals, which are not
directly generated from the AXI-stream output interface of
the DFT IP. A custom IP is needed to generate the Tlast and
Tkeep signals. The Tlast signal indicates the last word in the
stream data transfer, which is generated by taking the Tvalid
signal from the DFT IP as input with shifting by a clock pulse.
The Tkeep signal indicates the valid data bytes. In this design,
the data width is 32 bits (4 bytes), thus the Tkeep width is set
to 4.

 AXI GPIO IP and Combinational Logic

Since the PS monitors and controls the flow of operation
of the VIVADO design. An AXI GPIO IP is introduced to
connect the control and monitor signals from the PS to the
PL. The processor issues two control signals. One is the data
enable signal, which initiates the DDS output data passing to
the AXI FIFO IP; the other is the DFT enable signal, which
starts the DFT IP operation. The processor reads one signal
for monitoring which is the FIFO full flag. Once the FIFO is
full, the processor disables the enable signal of the
DDS_sinegen IP and issues an enable signal to the DFT IP.

This IP has two GPIO channels enabled, one 2-bit
channel for the two control signals and one 1-bit channel for
the monitor signal. The two control signals are differentiated
in the PL design using two Xslice IPs provided in the
VIVADO library.

To allow the workflow of the VIVADO design, some
combinational logic IPs are used. One control signal from the
GPIO IP is ANDed with the inverted FIFO full signal for the
DDS_sinegen IP; once the FIFO is full, the DDS_sinegen IP
will immediately stop sending data. Similarly, the other
control signal from the GPIO IP is ANDed with the FIFO
Tvalid signal and connected to the Tvalid input of the DFT

IP; the DFT IP will recognize the FIFO Tvalid only when the
PS issues the related control signal. This way it enables that
the DFT IP reads the N data samples only when the data block
is ready at the FIFO, rather than read them in between.

3.3 SDK Application Design

The Xilinx SDK [27] is an Integrated Development
Environment (IDE) that works with the hardware design
created by the VIVADO Design Suite. As mentioned earlier,
the processor in ZedBoard controls and monitors the
functionality of the VIVADO design and performs serial
communication with the GUI running on a PC. Hence, an
SDK application project needs to be created to work with the
VIVADO design.

The application design written by C language initializes
the peripherals at the start of the application project creation.
Specifically, it initializes the PS UART, UART interrupt,
AXI GPIO, and AXI DMA. The flowchart of the SDK
application program is shown in Figure 11. The PS UART in
the Xilinx SDK has the default baud rate of 115200, data
width 8 bits, stop bit of 1 and no parity. The PS UART can
work in four modes, Normal, Local loopback, Remote
loopback and Automatic echo. In this design, the UART is
set to work in Normal mode.

The UART interrupt is configured to generate an
interrupt when a data item is received on the serial port. The
interrupt subroutine reads the received data and raises a flag.
The flag is polled in the main function continuously. If a data
item is received on the serial port, it will be checked and a
corresponding action will be taken. The data item includes a
number of command characters that are defined to represent
corresponding frequencies to be set for the input waveform
from the DDS_sinegen IP. A special character ‘e’ is defined
to represent the start of the DFT operation. In the Zynq FPGA
device, there is a Generic Interrupt Controller (GIC) that
controls the interrupt request from the peripherals [30].

The GIC is configured for monitoring the UART
interrupt. The UART can generate an interrupt on multiple
events. It includes an interrupt mask register that can enable
or disable particular interrupt for the design [21]. A mask
value is generated and loaded in the interrupt mask register,
which enables the interrupt for the FIFO-full event, transmit
buffer empty event, overrun error event, framing error event,
parity error event and Timeout error event. The Timeout error
occurs when the receiver has remained idle for more than the
time set in the timeout register.

As mentioned in VIVADO design description, the PS
issues two control signals, one for FIFO write enable and one
for DFT IP start. If the DFT IP start command is received, a
FIFO write enable signal is set. It allows the DDS to write N
data points into the FIFO. The FIFO full signal is polled in
the processor. If the FIFO full signal goes high, the PS lowers
the FIFO write enable signal. Next, the processor starts the

DFT IP by setting the enable bit high. It starts the DFT
operation and produces the DFT output. The processor then
initializes the AXI DMA transfer for receiving data from the
PL. It polls if the AXI DMA is receiving the data. Once the
data are received, they are transferred through the serial port
to the GUI for display.

4 Design and Implementation of a GUI

A graphical user interface (GUI) is designed using
windows form application in .net framework [24]. Figure 12
shows the GUI panel developed for this design, which
includes the following functionalities:

- Communicating with the ZedBoard over the serial port
- Setting the frequency
- Start the DFT computation
- Stop the DFT computation
- Display the processed DFT data in frequency domain
- Display the received frequency calculated from the

processed DFT data

The communication between the ZedBoard and the GUI

is through the UART serial port. A menu option named Serial
Port Settings is provided on the top-left corner on the GUI. A
separate form is added in the design that pops out (as shown
in Figure 13) when the user clicks on the serial port settings
menu. The user can select the communication port, baud rate,
data bits, parity, stop bits and flow control. The
communication port number may be different for different
devices. After selecting the serial port settings, the user
should click on the Apply Settings button for activation.

The GUI communicates with the Zynq-7020 SoC
processor in the ZedBoard over the serial port. There is a
command structure used for communication. In this design,
different frequencies can be selected for the frequency setting
of the input signal. The selected frequencies are available
between 0 and 50 MHz, which are available in the drop-down
combo box labelled Select Frequency on the GUI panel.
Table 1 shows the frequencies selected in the drop-down box
of the GUI and their respective command indices. The index
of the selected frequency is sent to the ZedBoard over the
serial port. The command character of the Start Acquisition
is defined as the letter “e”. When the Start Acquisition button
is clicked, the letter “e” is sent to the ZedBoard.

Table 1 Selected frequency and index

Index Frequency
0 2MHz
1 4MHz
2 6MHz
3 7.5MHz
4 10MHz
5 12.75MHz
6 15MHz

7 18MHz
8 18.5MHz
9 20MHz

The ZedBoard transmits the DFT output data to the GUI

over the serial port. The data words are separated by “;” and
ends with a new line “\n” character. In the GUI program, the
ReadLine() function is used to read the complete data until
the new line character. The received data are then separated
using the Split() function and separated data strings are
converted to double for later use. To plot the received DFT
output data, a Zedgraph class [31] is used, which is an open
source class library, user control, and web control for .net,
written in C# language. The Zedgraph class provides
methods for the 2D plot in the C# GUI. The AddCurve()
method is used to initialize the graph pane. When the DFT
output data are received from the ZedBoard, the list of the
data to be plotted on the graph pane is updated. The updated
list is plotted on the graph pane by updating the list using the
zedhraph.invalidate() and zedgraph.axischange() methods.

To calculate the x-axis value in the form of frequency on
the GUI, the following equation is used:

 𝑓 ൌ 𝑖 ∙ 𝐹௦/𝑁 , (9)

where f is the frequency to be calculated corresponding to the
received data point; i is the index of data point; 𝐹௦ is the
sampling frequency, which is 100 MHz in this design; N is
the total number of data point, which is 200 in this design.
Using Equation (9), the frequency data points are calculated
and used as the x-axis in the graph pane.

To detect the frequency from the received DFT output
data, the maximum magnitude from the received 100-point
magnitude data is detected. The index of the data point with
the maximum magnitude is retrieved using the
Array.IndexOf() method; by this way we get the index of the
maximum magnitude. This index is put into the above
equation to calculate the corresponding frequency. The
calculated value is then displayed in a textbox labelled
Received Frequency on the GUI panel.

Once the Start Acquisition button is pressed, it sends the
start command to the FPGA functionality on the ZedBoard
and sets a flag to indicate continuous data acquisition. The
FPGA functionality completes the operation and sends the
DFT output data to the GUI. Upon the reception of the data
from the FPGA, the GUI plots the data on the Zedgraph pane
and checks for the flag set for continuous acquisition. If the
flag is set, the start command is sent over the serial port again.
To stop the continuous acquisition, the user must click the
Stop Acquisition button. The Stop Acquisition button clears
the continuous acquisition flag and thus stops the acquisition.
A flowchart of the C# program for the GUI is given in Figure
14.

5 System Operation and Results

After the VIVADO project and the GUI program are
completed, we can run the whole testing system. First, we run
the synthesis and implementation of the VIVADO project
and generate the bitstream file. Next, we configure the
ZedBoard boot mode jumpers (JP7-JP11) to the JTAG boot
mode and connect the ZedBoard power cable, UART cable,
and USB-JTAG cable respectively as shown in Figure 15.
The power-LED (green LED) should light on. Then, we
export hardware and launch an SDK application from the
VIVADO project. In the opened SDK window, we program
the FPGA by clicking the command “Program FPGA” on the
SDK menu; the done-LED (blue LED) on the ZedBoard
should light on. Finally, right click on the SDK application
and run the command “Launch on hardware”. Now the FPGA
is ready to take commands from the GUI over the serial port.

The following are the steps to operate the C# GUI and
test the DFT IP response.

 Once the GUI starts, a message pops out reminding
you to select a serial port, set the serial port from the
Serial Port Settings menu on the GUI panel.

 Select the frequency from the dropdown combo box
with labelled Select Frequency.

 Start the DFT computation by clicking on Start
Acquisition button. The Zedgraph pane DFT DATA
will show a plot of the DFT magnitude received from
the FPGA; and the textbox labelled Received
Frequency will show the frequency of the input signal
calculated from the received DFT data.

 To stop the DFT computation, click on the Stop
Acquisition button.

The following figures show the GUI snapshots for

different frequencies. Figure 16 shows the magnitude
response for an input signal with frequency 7.5MHz. It can
be observed that the peak of the magnitude is at 7.5 MHz in
the plot and the received frequency textbox also shows
7500000 Hz. Similarly, Figure 17 shows the magnitude
response for an input signal with frequency 20 MHz.

In Figure 18, we intentionally set the frequency of the
input signal as 12.75MHz, which requires the DDS generate
a signal of frequency 12.75 MHz. However, the minimum
frequency interval in the x-axis in this design is Fs/N = 100
MHz/200 = 500 kHz. Hence, the minimum change in the
detected frequency would be 500 kHz. In this case the input
frequency is 12.75 MHz; the detected frequency should vary
between 12.5 MHz and 13.0 MHz. In the experiment, it is
verified that the frequency indeed dynamically jumps
between 12.5 MHz and 13.0 MHz, and one of them is
randomly captured for display in the received frequency
textbox.

6 Conclusions

This work involved developing a complete FPGA based
digital system including design and optimization of a DFT
computation algorithm using the HLS, a VIVADO project
that tests and validates the DFT IP, and a C# GUI that
visualizes the results of the DFT output data. The process of
design and development of the DFT IP in the HLS provided
hands-on experience for using the HLS design techniques for
parallelization and optimization. Additionally, the optimized
usage of floating point, fixed point and arbitrary integers is
handled during the DFT IP design. The optimized DFT IP
reduced the latency of the logic from 1.43 ms to 366.05 μs.
This work also provided hands-on experience for developing
a VIVADO project for validation of a custom IP packaged by
the HLS. The Xilinx provided IP cores such as DDS and AXI
DMA were used in developing the testing system. The Zynq-
7020 SoC processor was configured to control the functional
flow of the FPGA design and transfer the DFT output data
over a UART serial port. A GUI was designed using the
windows form application in C# programming to display the
DFT output data. The Zedgraph technique was used to
visualize the DFT magnitude spectrum plotting on the GUI.
Experimental operations and results were presented with
discussion. For the future work, we consider to apply the
same development method to the FPGA implementation on
the inverse DFT and other applications such as image
processing. The DFT IP design, optimization and
implementation as well as the VIVADO project development
methods can be extended to other FPGA applications.

Acknowledgement

The authors would like to acknowledge the support of the
project development from St Cloud State University, MN,
USA through the Early Career Grant (No. 211129) and the
support from the Department of Electrical and Computer
Engineering through providing its equipment and software.

References

[1] S. Brown and J. Rose, "FPGA and CPLD architectures: A
tutorial", IEEE Design and Test of Computers, 13(2):42–57,
1996.

[2] S. Vaidyanathan, E. Tlelo-Cuautle, A. Sambas, L. G. Dolvis,
and O. Guillén-Fernández, "FPGA design and circuit
implementation of a new four-dimensional multistable
hyperchaotic system with coexisting attractors", International
Journal of Computer Applications in Technology, Vol. 64, No.
3, pp. 223-234, 2020.

[3] S. Vaidyanathan, I. Pehlivan, L. G. Dolvis, K. Jacques, M.
Alcin, M. Tuna, and I. Koyuncu, "A novel ANN-based four-
dimensional two-disk hyperchaotic dynamical system,
bifurcation analysis, circuit realisation and FPGA-based
TRNG implementation", International Journal of Computer
Applications in Technology, Vol. 62, No. 1, pp. 20-35, 2020.

[4] R. Nane, V.M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y.T.
Chen, H. Hsiao, and S. Brown, "A Survey and Evaluation of
FPGA High-Level Synthesis Tools", IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems.
35 (10): 1591–1604, 2016.

[5] J.G. Proakis and D.G. Manolakis, Digital Signal Processing:
Principles, Algorithms and Applications, 3rd Edition, Prentice
Hall, Oct. 1995.

[6] D. Bland, T. Laakso and A. Tarczynski, "Analysis of algorithms
for nonuniform-time discrete Fourier transform", IEEE
International Symposium on Circuits and Systems. Circuits
and Systems Connecting the World (ISCAS 96), Vol. 2, pp.
453-456, 1996.

[7] S. Valipour1, A.D. Shaligram and G.R.Kulkarni, "Spectral
analysis of EEG signal for detection of alpha rhythm with open
and closed eyes", International Journal of Engineering and
Innovative Technology (IJEIT), Vol. 3, No. 6, pp. 1-4, Dec.
2013.

[8] M. J. Alam, P. Kenny, P. Dumouchel and D. O'Shaughnessy,
"Robust speech recognition using warped DFT-based cepstral
features in clean and multistyle training", 2014 22nd European
Signal Processing Conference (EUSIPCO), Lisbon, Portugal,
pp. 1791-1795, 2014.

[9] Y. Liu, F. Zhang, H. Miao and R. Tao, "The hopping discrete
fractional Fourier transform", Signal Processing, Vol. 178,
Available online August 2020.
https://doi.org/10.1016/j.sigpro.2020.107763

[10] Y. Bengio and Y. LeCun, Scaling learning algorithms towards
AI, Chapter 14, pp. 321-360. In L. Bottou, O. Chapelle, D.
DeCoste, and J. Weston, editors, Large-Scale Kernel
Machines, MIT Press, 2007.

[11] M. Mathieu, M. Henaff and Y. LeCun, "Fast training of
convolutional networks through FFTs", CoRR, abs/1312.5851,
2014. http://arxiv.org/abs/1312.5851

[12] O. Rippel, J. Snoek and R.P. Adams, "Spectral representations
for convolutional neural networks", Proceedings of the 28th
International Conference on Neural Information Processing
Systems (NIPS 2015), Vol. 2, pp. 2449-2457, Dec. 2015.

[13] F. Qu, F. Guo, W. Jiang and X. Meng, "Data Compression
Based on DFT for Passive Location in Sensor Networks",
Procedia Engineering, Vol. 29, pp. 3091-3095, 2012.

[14] G. Pastor, I. Norros, R. Jäntti and A.J. Caamaño, "Compressive
Data Aggregation from Poisson point process observations",
2015 International Symposium on Wireless Communication
Systems (ISWCS), Brussels, Belgium, pp. 106-110, 25-28
Aug. 2015.

[15] D. Sadhukhan, S. Pal and M. Mitra, "Electrocardiogram data
compression using adaptive bit encoding of the discrete Fourier
transforms coefficients", IET Science, Measurement &
Technology, Vol. 9, No. 7, pp. 866-874, 2015.

[16] J. van der Hoeven, "The truncated fourier transform and
applications", Proceedings of the 2004 international
symposium on Symbolic and algebraic computation (ISSAC),
pp. 290–296, July 2004.
https://doi.org/10.1145/1005285.1005327

[17] D.D. Chen, N. Mentens, F. Vercauteren, S.S. Roy, R. C.
Cheung, D. Pao, and I. Verbauwhede, "High-Speed
Polynomial Multiplication Architecture for Ring-LWE and

SHE Cryptosystems", IEEE Transactions on Circuits and
Systems I, vol. 62, no. 1, pp. 157-166, 2015.

[18] G. Bongiovanni, P. Corsini and G. Frosini, “One-dimensional
and Two-dimensional Generalized Discrete Fourier
Transform”, IEEE Trans. Acoust. Speech Signal Process. Vol.
ASSP-24, pp. 97-99, Feb. 1976.

[19] V. Britanak and K. R. Rao, “The Fast Generalized Discrete
Fourier Transforms: A Unified Approach to The Discrete
Sinusoidal Transforms Computation”, Signal Processing, vol.
79, pp. 135-150, Dec. 1999.

[20] Xilinx, Inc, “Vivado Design Suite User Guide: High-Level
Synthesis”, UG902, v2020.1, June 2020.

[21] Xilinx, Inc, “Zynq-7000 SoC: Technical Reference Manual”,
UG585, v1.12.2, July 2018. Available:
https://www.xilinx.com/support/documentation/user_guides/u
g585-Zynq-7000-TRM.pdf

[22] Xilinx, Inc, “Vivado Design Suite User Guide: Using the
Vivado IDE”, UG893, v2020.1, June 2020. Available:
https://www.xilinx.com/support/documentation/sw_manuals/
xilinx2020_1/ug893-vivado-ide.pdf

[23] Digilent, Inc, "ZedBoard Hardware User’s Guide", Ver 2.2,
Jannuary 2014. Available:
http://zedboard.org/sites/default/files/documentations/ZedBoa
rd_HW_UG_v2_2.pdf

[24] Microsoft Corp., Visual Studio 2019. Available:
https://visualstudio.microsoft.com/

[25] Xilinx, Inc, “DDS Compiler v6.0: LogiCORE IP Product
Guide”, Dec. 2017. Available:

https://www.xilinx.com/support/documentation/ip_documenta
tion/dds_compiler/v6_0/pg141-dds-compiler.pdf

[26] B. Hahn and D. Valentine, Essential MATLAB for Engineers
and Scientists, 7th Edition, Academic Press; April 2019.

[27] Xilinx, Inc, “Getting Started with Xilinx SDK”, v2016.2.
 Available:

https://www.xilinx.com/html_docs/xilinx2016_2/SDK_Doc/i
ndex.html

[28] Xilinx, Inc, “Vivado Design Suite: Vivado AXI Reference”,
UG1037, v4.0, July 2017. Available:
https://www.xilinx.com/support/documentation/ip_documenta
tion/axi_ref_guide/latest/ug1037-vivado-axi-reference-
guide.pdf

[29] Xilinx, Inc, “AXI DMA v7.1: LogiCORE IP Product Guide”,
June 2019. Available:
https://www.xilinx.com/support/documentation/ip_documenta
tion/axi_dma/v7_1/pg021_axi_dma.pdf

[30] M.A. Enderwitz, R.A. Elliot, C.H. Louise, and R.W. Stewart,
The Zynq Book: Embedded Processing with the ARM
Cortex-A9 on the Xilinx Zynq-7000 All Programmable SoC,
First Edition, Strathclyde Academic Media, 2014.

[31] ZedGraph. Available:
https://sourceforge.net/projects/zedgraph/

Appendix: All figures

Fig 1. Algorithm of computing the DFT magnitude and critical implementation code

Fig 2. Comparison of DFT results from HLS Logic and MATLAB simulation for 100Hz, 250 Hz and 400 Hz sinusoidal inputs

0 50 100 150 200 250 300 350 400 450 500

Frequency (Hz)

0

2

4

6

8

10

12
105

Input 100 Hz, HLS
Input 100 Hz, Matlab
Input 250 Hz, HLS
Input 250 Hz, Matlab
Input 400 Hz, HLS
Input 400 Hz, Matlab

Fig 3. Applying different HLS directives to the DFT Logic elements

Fig 4. Performance comparison of the latency of the DFT module before and after optimization

Fig 5. Loop latency of the DFT logic after applying the directives

Fig 6. The DFT module RTL simulation waveforms

Fig 7. The VIVADO project block diagram

Fig 9. The DDS IP core configuration summary

Fig 10. AXI-Lite register usage for phase programming (Verilog code)

Fig 11. Flowchart of the SDK application program

Fig 12. The GUI panel for communicating with the ZedBoard

Fig 13. The serial port settings menu

Fig 14. Flowchart of the GUI program

Fig 15. The ZedBoard in running

Fig 16. DFT magnitude for an input signal with frequency 7.5MHz

Fig 17. DFT magnitude for an input signal with frequency 20MHz

Fig 18. DFT magnitude for an input signal with frequency 12.75MHz

