People’s Indifferences

Goods are good

Assumptions dominance

North-East is preferred direction. Given those assumptions, it means that indifference curves are negatively sloped. There is empirical application to it: budget exhaustion = no matter how big Mother Theresa’s budget, it all had been spent.

Budget Constraint

\[P_1 X_1 + P_2 X_2 \leq I \] where I is money (income)

\[P_1 \] are money prices

\[X_i \] are rates of consumption

We are interested:

a.) looks like?

b.) \(\Delta \) in response to \(\Delta I \) or \(\Delta P_1 \)?

\[X_2 \leq \frac{I}{P_2} - \frac{P_1}{P_2} X_1 \]

if a person chooses \(X_1 = 0 \) then \(X_2 = \frac{I}{P_2} \)
slopes of budget constraint: \(\frac{\partial X_2}{\partial X_1} = -\frac{P_1}{P_2} \), holding money income and prices constraint.

What happens to the \(X_2 \) consumption as \(X_1 \) changes?

Rewrite budget constraint:
\[
X_1 \leq \frac{I}{P_1} - \frac{P_2 X_2}{P_1}
\]
consumption

How does it change in response to \(\Delta I \)?

\(M^I > M \Rightarrow \) shift parallel
\(M^H < M \Rightarrow \) shift parallel

How does it change in response to \(\Delta P_1 \)?

Vertical intercept: \(\frac{I}{P_2} \), so \(\Delta P_1 \) does not change on vertical intercept.

Slope: \(-\frac{P_2}{P_1} \), so \(\Delta P_1 > 0 \) means budget constraint is steeper; \(\Delta P_1 < 0 \) means flatter

horizontal intercept: \(\frac{I}{P_1} \) \(\Delta P_1 > 0 \) shift in
\(\Delta P_1 < 0 \) shift out

Corner solution
Value of X_1^* that is obtained as a result of maximizing subject to constraint (special value)

$$X_1^* = \frac{I}{2P_1}$$

X_1^* is optimum (endogenous variable)
I, P, and P_2--exogenous variables or parameters (fixed from outside)

Comparative static

What happens to the choice of X_1 when I or P_1, or P_2 changes?

$$\frac{\partial X_1^*}{\partial I} = \frac{1}{2P_1} > 0 \text{ given that } P_1 > 0$$

Thus a rise in consumer income will increase consumption of X_1. There will be more of everything in my shopping cart.

$$\frac{\partial X_2^*}{\partial I} = \frac{1}{2P_2} > 0, \text{ in general } \frac{\partial X_1^*}{\partial I} = \frac{1}{2P_i} > 0$$

Consumption of both goods increase when income increases or prices decrease.

$$\frac{\partial X_1^*}{\partial P_1} = -\frac{I}{2P_1^2} < 0 \text{ given that } I > 0, P_1 > 0$$

Holding money/income constraint the demand curve is downward sloping.

$$\frac{\partial X_2^*}{\partial P_2} = -\frac{I}{2P_2^2} < 0, \text{ in general } \frac{\partial X_1^*}{\partial P_i} = -\frac{I}{2P_i^2} < 0$$

Homework: derive $\frac{\partial X_1^*}{\partial P_2} = 0$ is it true?